Abstract

System-on-chip millimeter wave integrated circuit technology is used on the two-dimensional millimeter-wave imaging reflectometer (MIR) upgrade for density fluctuation imaging on the DIII-D tokamak fusion plasma. Customized CMOS chips have been successfully developed for the transmitter module and receiver module array, covering the 55-75GHz working band. The transmitter module has the capability of simultaneously launching eight tunable probe frequencies (>0 dBm output power each). The receiver enclosure contains 12 receiver modules in two vertical lines. The quasi-optical local oscillator coupling of previous MIR systems has been replaced with an internal active frequency multiplier chain for improved local oscillator power delivery and flexible installation in a narrow space together with improved shielding against electromagnetic interference. The 55-75GHz low noise amplifier, used between the receiver antenna and the first-stage mixer, significantly improves module sensitivity and suppresses electronics noise. The receiver module has a 20 dB gain improvement compared with the mini-lens approach and better than -75 dBm sensitivity, and its electronics noise temperature has been reduced from 55000K down to 11200K. The V-band MIR system is developed for co-located multi-field investigation of MHD-scale fluctuations in the pedestal region with W-band electron cyclotron emission imaging on DIII-D tokamak.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.