Abstract

ABSTRACTSystem of Rice Intensification (SRI) has spread as an innovation of rice cultivation that can produce higher crop yields and conserve seed and water resources. The SRI innovation is also gaining popularity in north-western (NW) Himalayas on one hand and hybrid rice technology on the other in the region. Moreover, rice productivity in NW Himalayas is quite low owing to the use of low-yielding germplasm and poor crop management. Thus, SRI principles coupled with hybrid rice technology seems to be a boon to boost rice productivity in the irrigated ecosystem of wet-temperate NW Himalayas well known for rice cultivation. Therefore, comparative performance of promising rice hybrids under SRI was assessed at three locations in wet-temperate NW Himalayas (India) using nine promising rice hybrids including state-recommended rice hybrid “Arize–6129” as check cultivar. It was revealed that various hybrids differed significantly w.r.t. days to 50% flowering, days to 75% maturity, plant height, tillers hill−1, panicles hill−1, panicles m−2, and panicle length. Highest number of panicles m−2 (370) was observed in Arize–6129 followed by US–312, Bioseed–786, and NK–3325, respectively. Significantly longer panicles were observed in Dhanya–2366 followed by Arize–6129, US–312, Bioseed–786, NK–3325, and US–10, respectively. Arize–6129 resulted in significantly higher grain (75 q ha−1) and straw yield (125 q ha−1) followed by US–312, Dhanya–2366, NK–3325, PAC–801, US–10, Bioseed–786, Uday–111, and Uday–131, respectively. The production- and monetary-efficiency as well as gross and net returns and B:C ratio also followed the similar trend as that of crop productivity with significantly higher production– (67 kg ha−1 day−1) and monetary–efficiency (INR 608.4 ha−1 day−1), and net returns (INR 68138 ha−1) and B:C ratio (3.66) in check cultivar “Arize–6129” over other rice hybrids. Higher grain productivity (49.5–75.0 q ha−1), net returns (INR 39238–68138 ha−1), and B:C ratio (2.53–3.66) in current study conclusively inferred that SRI coupled with hybrid rice technology can harness higher productivity and profitability. Protein content (8.30–8.45%) exhibited higher values under Bioseed–786 followed by NK–3325, UDAY–111, and Arize–6129; however, NPK uptake (grains, straw, total) was significantly highest in Arize–6129 followed by US–312, Dhanya–2366, and NK–3325, respectively. Total water productivity (6.4–9.75 kg ha−1 mm−1), irrigation water productivity (16.5–25 kg ha−1 mm−1), and economic water productivity (64.0–97.5 INR ha−1 mm−1) collectively followed the trend of Arize–6129 > US–312 > Dhanya–2366 > NK–3325 > US–10 > PAC–801 > Bioseed–786 > Uday–111 > Uday–131 in current study. Overall, Arize–6129, US–312, and Dhanya–2366 were proved as potential rice hybrids in terms of their higher crop and water productivity and economic profitability among above nine rice hybrids for their large-scale cultivation under SRI in wet-temperate NW Himalayas.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call