Abstract

Laser marking of ceramic materials is a multivariable non-linear process. Real-time control of the process requires the understanding of system dynamics and parameter interaction. In this work, direct inverse control (DIC) and non-linear predictive control (NPC) based on artificial neural networks were applied. The output variable considered for the laser clay tile-marking process was melt pool temperature. The input quantities investigated were laser power and traverse speed. The results show that the NPC accomplished a better reference tracking than the DIC. It was also found that the beam velocity and laser power could well be used to counteract disturbances.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.