Abstract
Vapor Compression cycle Systems (VCSs) are being considered for thermal management aboard modern aircraft where dynamic changes in heat loads are very common. Predicting dynamic behavior of VCSs is critical to design, sizing, and control of aircraft thermal management systems. A novel Lagrangian method to model the dynamic behavior of VCSs has been developed. This approach divides each fluid flow into a large number of elements having fixed mass, but variable volume and position. At discrete time steps, heat transferred to or from each mass element is determined by component models. This paper gives simulation results showing system startup under PID feedback control. Then, from steady state, the system response to an increase in heat load, an increase in sink availability, a decrease in valve throttle and an increase in compressor speed are simulated and the results reported. Results indicate that the Lagrangian method can provide results for a wide range of cases and that VCC systems require extensive control to meet performance objectives.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.