Abstract

The deterioration of food, especially in meat products, can lead to serious health problems. Even with modern preservation technologies, a significant amount of food is lost due to microbial deterioration. As the very first step of the preservation process, the microflora that grows during the storage time and in spoiling foods should be well-known to identify critical levels. Electronic nose and gas chromatography analysis systems can provide sensitive and promising results. Similarly, bacterial analysis is an important process for determining bacterial groups that result in the emergence of such gases in gas chromatography-mass spectrometry (GC-MS) analysis during the degradation time. This study aims to determine the degradation levels for some meat types under different environmental conditions, such as temperature and duration, to compare with other measurement techniques for evaluating the verification of data. E-nose device, developed in this study, can detect carbon monoxide (CO), methane (CH4), ethanol (C2H5OH), and ammonia (NH3) using metal oxide semiconductor (MOS) sensors. In order to test sensory measurements during this period, GC-MS and microbial measurements were used. E-nose measurements show that the results are in accord with each other. This system can easily be made portable, occupying very little space.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call