Abstract

JEDEC recently introduced its new standard for 3D-stacked Wide I/O DRAM memories, which defines their architecture, design, features and timing behavior. With improved performance/power trade-offs over previous generation DRAMs, Wide I/O DRAMs provide an extremely energy-efficient green memory solution required for next-generation embedded and high-performance computing systems. With both industry and academia pushing to evaluate and employ these highly anticipated memories, there is an urgent need for an accurate power model targeting Wide I/O DRAMs that enables their efficient integration and energy management in DRAM stacked SoC architectures. In this paper, we present the first system-level power model of 3D-stacked Wide I/O DRAM memories that is almost as accurate as detailed circuit-level power models of 3D-DRAMs. To verify its accuracy, we experimentally compare its power and energy estimates for different memory workloads and operations against those of a circuit-level 3D-DRAM power model and show less than 2% difference between the two sets of estimates.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.