Abstract
This research investigates the suitability of Polytopic Linear Models (PLMs) for the analysis, modelling and control of a class of nonlinear dynamical systems. The PLM structure is introduced as an approximate and alternative description of nonlinear dynamical systems for the benefit of system analysis and controller design. The model structure possesses three properties that we would like to exploit. Firstly, a PLM is build upon a number of linear models, each one of which describes the system locally within a so-called operating regime. If these models are combined in an appropriate way, that is by taking operating point dependent convex combinations of parameter values that belong to the different linear models, then a PLM will result. Consequently, the parameter values of a PLM vary within a polytope, and the vertices of this polytope are the parameter values that belong to the different linear models. A PLM owes its name to this feature. Accordingly, a PLM can be interpreted on the basis of a regime decomposition. Secondly, since a PLM is based on several linear models, it is possible to describe the nonlinear system more globally compared to only a single linear model. Thirdly, it is demonstrated that, under the appropriate conditions, nonlinear systems can be approximated arbitrary close by a PLM, parametrized with a finite number of parameters. There will be given an upper bound for the number of required parameters, that is sufficient to achieve the prescribed desired accuracy of the approximation. An important motivation for considering PLMs rests on its structural similarities with linear models. Linear systems are well understood, and the accompanying system and control theory is well developed. Whether or not the control related system properties such as stability, controllability etcetera, are fulfilled, can be demonstrated by means of (often relatively simple) mathematical manipulations on the linear system’s parameterization. Controller design can often be automated and founded on the parameterization and the control objective. Think of control laws based on stability, optimality and so on. For nonlinear systems this is only partly the case, and therefore further development of system and control theory is of major importance. In view of the similarities between a linear model and a PLM, the expectation exists that one can benefit from (results and concepts of) the well developed linear system and control theory. This hypothesis is partly confirmed by the results of this study. Under the appropriate conditions, and through a simple analysis of the parametrization of a PLM, it is possible to establish from a control perspective relevant system properties. One of these properties is stability. Under the appropriate conditions stability of the PLM implies stability of the system. Moreover, a few easy to check conditions are derived concerning the notion of controllability and observability. It has to be noticed however, that these conditions apply to a class of PLMs of which the structure is further restricted. The determination of system properties from a PLM is done with the intention to derive a suitable model, and in particular to design a model based controller. This study describes several constructive methods that aim at building a PLM representation of the real system. On the basis of a PLM several control laws are formulated. The main objective of these control laws is to stabilize the system in a desired operating point. A few computerized stabilizing control designs, that additionally aim at optimality or robustness, are the outcome of this research. The entire route of representing a system with an approximate PLM, subsequently analyzing the PLM, and finally controlling the system by a PLM based control design is illustrated by means of several examples. These examples include experimental as well as simulation studies, and nonlinear dynamic (mechanical) systems are the subject of research.
Paper version not known (
Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have