Abstract

We prove a mixed characteristic analog of the Beilinson-Lichtenbaum Conjecture for p-adic motivic cohomology. It gives a description, in the stable range, of p-adic motivic cohomology (defined using algebraic cycles) in terms of differential forms. This generalizes a result of Geisser [10] from small Tate twists to all twists and uses as a critical new ingredient the comparison theorem between syntomic complexes and p-adic nearby cycles proved recently in [8].

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.