Abstract

We give a factorization of the fundamental cycle of an analytic space in terms of certain differential forms and residue currents associated with a locally free resolution of its structure sheaf. Our result can be seen as a generalization of the classical Poincar\'e-Lelong formula. It is also a current version of a result by Lejeune-Jalabert, who similarly expressed the fundamental class of a Cohen-Macaulay analytic space in terms of differential forms and cohomological residues.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.