Abstract

Purpose: Nanomaterials with their derivable potentials offer wide obtain ability and have recently aroused much attention for biomedical applications. Nowadays, nanomaterials-based colorimetric sensing is a quickly emerging field of sensing applications. Nanomaterials are considered as the main component of colorimetric determination of hydrogen peroxide to replace the natural enzyme-based sensors because of some associated intrinsic drawbacks. Considering the advantageous properties of ionic liquid (IL) for various applications, significant attention has been made to the use of ionic liquid stabilized metal NPs which may serve as a regulator to enhance the catalytic performance of the metal nanoparticles in the different IL reaction medium. 
 Methodology: The peroxidase-like activity of IL coated metal NPs (IL-MNPs) have been considered for the catalytic oxidation reaction of chromogenic substrate 3,3,5,5- tetramethylbenzidine (TMB) in the presence of H2O2 at an estimated wavelength of 652 nm.
 Results: The synthesized metal nanoparticles (Ag) were produced using a chemical reduction method. Various characterization techniques like FTIR, UV-Visible spread Reflectance Spectroscopy [UV-VIS DRS], were employed, which verified the structure, nano-size and successful combination of metal dopant ion into the samples. The molecular structure of ionic liquid with varying cations was produced and confirmed by 1H-NMR spectroscopy. The ionic liquid was coated on metal nanoparticles to enhance their conductivity. 
 Unique Contribution to Theory, Practice and Policy: Optimized reaction conditions like pH, temperature and catalyst dosage affect catalytic activity and color sensing properties. The coating of [Min] Ac on Ag achieved low detection limits and colorimetric detection of [Pyr] based Ag.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call