Abstract

Homeostatic antigen presentation by hepatic antigen-presenting cells, which results in tolerogenic T-cell education, could be exploited to induce antigen-specific immunological tolerance. Here we show that antigens modified with polymeric forms of either N-acetylgalactosamine or N-acetylglucosamine target hepatic antigen-presenting cells, increase their antigen presentation and induce antigen-specific tolerance, as indicated by CD4+ and CD8+ T-cell deletion and anergy. These synthetically glycosylated antigens also expanded functional regulatory T cells, which are necessary for the durable suppression of antigen-specific immune responses. In an adoptive-transfer mouse model of type-1 diabetes, treatment with the glycosylated autoantigens prevented T-cell-mediated diabetes, expanded antigen-specific regulatory T cells and resulted in lasting tolerance to a subsequent challenge with activated diabetogenic T cells. Glycosylated autoantigens targeted to hepatic antigen-presenting cells might enable therapies that promote immune tolerance in patients with autoimmune diseases.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call