Abstract

Type 1 diabetes (T1D) results from autoimmune-mediated loss of insulin-producing beta-cells. Recent findings suggest that the events controlling T1D development are not only immunological, but also neuronal in nature. In the non-obese diabetic (NOD) mouse model of T1D, a mutant sensory neuron channel, TRPV1, initiates chronic, progressive beta-cell stress, inducing islet cell inflammation. This novel mechanism of organ-specific damage requires a permissive, autoimmune-prone host, but ascribes tissue specificity to the local secretory dysfunction of sensory afferent neurons. In NOD mice, normalizing this neuronal function by administration of the neurotransmitter substance P clears islet cell inflammation, reduces insulin resistance and restores normoglycemia. Here, we discuss this neuro-immuno-endocrine model, its implications and the involvement of sensory neurons in other autoimmune disorders. These developments might provide novel neuronal-based therapeutic interventions, particularly in diabetes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call