In this work, we present a transceiver front-end in SiGe BiCMOS technology that can provide an ultra-wide bandwidth of 100 GHz at millimeter-wave frequencies. The front-end employs a novel configuration for low-loss distribution of broadband generated pulses as well as coherent spatial combining of received pulses. This leads to the realization of a fully integrated ultra-high-resolution imaging chip for biomedical applications. We realized an ultra-wide imaging bandwidth of 100 GHz by the integration of two adjacent, disjointed frequency sub-bands of 10–50 GHz and 50–110 GHz respectively. The transceiver front-end is capable of both transmit (TX) and receive (RX) operations. This is a key building-block for a scalable system in which a unit cell is repeated in the X and Y directions resulting in less power and area consumption. The imaging elements were designed and fabricated in Global Foundry 130-nm SiGe 8XP BiCMOS process technology.

Full Text

Published Version
Open DOI Link

Get access to 115M+ research papers

Discover from 40M+ Open access, 2M+ Pre-prints, 9.5M Topics and 32K+ Journals.

Sign Up Now! It's FREE