Abstract

A synthetic heptaphosphopeptide comprising the fully phosphorylated carboxyl terminal phosphorylation region of bovine rhodopsin, residues 330–348, was found to induce a conformational change in bovine arrestin. This caused an alteration of the pattern of limited proteolysis of arrestin similar to that induced by binding phosphorylated rhodopsin or heparin. Unlike heparin, the phosphopeptide also induced light-activated binding of arrestin to both unphosphorylated rhodopsin in disk membranes as well as to endoproteinase Asp-N-treated rhodopsin (des 330–348). These findings suggest that one function of phosphorylation of rhodopsin is to activate arrestin which can then bind to other regions of the surface of the photoactivated rhodopsin.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.