Abstract

Para (p)-phenylenediamine and its toxic metabolites induce excess reactive oxygen species formation that results in bladder voiding dysfunction. We determined the effects of synthetic Ni-containing superoxide dismutase mimics and the role of oxidative stress in p-phenylenediamine-induced urinary bladder dysfunction. P-phenylenediamine (60 μg/kg/day) was intraperitoneally administered for 4 weeks to induce bladder injury in female Wistar rats. Synthetic Ni-containing superoxide dismutase mimics, WCT003 (1.5 mg/kg) and WCT006 (1.5 mg/kg), were then intraperitoneally administered for 2 weeks. Transcystometrograms were performed in urethane-anesthetized rats. The in vitro and in vivo reactive oxygen species levels and pathological changes in formalin-fixed bladder sections were evaluated. Western blotting and immunohistochemistry elucidated the pathophysiological mechanisms of oxidative stress-induced apoptosis, autophagy, and pyroptosis. P-phenylenediamine increased voiding frequency, blood and urinary bladder levels of reactive oxygen species, and neutrophil and mast cell infiltration. It also upregulated biomarkers of autophagy (LC3 II), apoptosis (poly (ADP-ribose) polymerase), and pyroptosis (Caspase 1). WCT003 and WCT006 ameliorated reactive oxygen species production, inflammation, apoptosis, autophagy, pyroptosis, and bladder hyperactivity. P-phenylenediamine increased oxidative stress, inflammatory leukocytosis, autophagy, apoptosis, and pyroptosis formation within the urinary bladder. Novel synthetic nickel-containing superoxide dismutase mimics relieved p-phenylenediamine-induced bladder inflammation and voiding dysfunction.

Highlights

  • Para-phenylenediamine (PPD) is a common ingredient in hair and leather dyes [1, 2]

  • We determined the effects of synthetic Ni-containing superoxide dismutase mimics and the role of oxidative stress in p-phenylenediamine-induced urinary bladder dysfunction

  • After WCT003 or WCT006 treatment (Figure 2), the inter-contraction interval (ICI) in both groups significantly increased compared to PPD group (P < 0.05)

Read more

Summary

Introduction

Para-phenylenediamine (PPD) is a common ingredient in hair and leather dyes [1, 2]. 33% of women over age 18 and 10% of men over age 40 in North America and Europe use hair dye [3]. PPD poisonings have been reported in developing countries due to its widespread industrial application [4, 5]. The International Agency for Research on Cancer (IARC) suggested that there was inadequate evidence that personal use of hair dye entails www.impactjournals.com/oncotarget Control group PPD group. People receiving tattoos could bear a higher risk of PPD absorption [10]. The significant public health impact of widespread applications of PPD and the associated health risks should be considered

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.