Abstract
Load modeling is one of the crucial tasks for improving smart grids’ energy efficiency. Among many alternatives, machine learning-based load models have become popular in applications and have shown outstanding performance in recent years. The performance of these models highly relies on data quality and quantity available for training. However, gathering a sufficient amount of high-quality data is time-consuming and extremely expensive. In the last decade, Generative Adversarial Networks (GANs) have demonstrated their potential to solve the data shortage problem by generating synthetic data by learning from recorded/empirical data. Educated synthetic datasets can reduce prediction error of electricity consumption when combined with empirical data. Further, they can be used to enhance risk management calculations. Therefore, we propose RCGAN, TimeGAN, CWGAN, and RCWGAN which take individual electricity consumption data as input to provide synthetic data in this study. Our work focuses on one dimensional times series, and numerical experiments on an empirical dataset show that GANs are indeed able to generate synthetic data with realistic appearance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.