Abstract

The synthetic high-pressure α- and β-modification of (Mg1–xFex)2SiO4, wadsleyite and ringwoodite, respectively, were studied by optical absorption spectroscopy at ambient and hydrostatic high-pressure conditions. In addition, the effects of thermal annealing on the crystals were investigated. Under hydrostatic compression up to ~13 GPa and then consequent released to atmospheric pressure there were changes in the spectra and related changes in the crystal color. This is a clear indication that some Fe2+ was oxidized to Fe3+. The spectra of both ringwoodite and wadsleyite change after annealing in air at temperatures up to 300 °C. The intensities of electronic spin-allowed bands of Fe2+ decrease and the intensity of the charge-transfer electronic transition O2– → Fe3+, as given by the low-energy absorption edge in the UV region, increases. These crystal-chemical changes are shown by a weakening of the blue (ringwoodite) and green (wadsleyite) colors and a concomitant increase in yellowish tints. The effects of Fe2+ oxidation to Fe3+, upon decompression from high pressures as well as through annealing at relatively low temperatures, can cause the disintegration of both phases. Thus, both minerals have not yet been reliably identified at near surface Earth conditions after originating from deep-seated volcanism or deep subduction zone processes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call