Abstract
AbstractThe metabolism of amines is governed by a variety of enzymes such as amine oxidase, flavoenzyme, and cytochrome P‐450. A wide variety of compounds are produced such as ammonia and alkaloids in selective and clean oxidation reactions that proceed under mild reaction conditions. Simulation of the functions of these enzymes with simple transition metal complex catalysts may lead to the discovery of biomimetic, catalytic oxidations of amines and related compounds. Indeed, metal complex catalyzed oxidations have been found to proceed with high efficiency. The first section of this review discusses the dehydrogenative oxidations of amines with transition metal catalysts by transition metal catalysts that simulate amine oxidase. The second section highlights the catalytic oxidation of secondary amines to nitrones by simulation of flavoenzymes. The third section describes the simulation of the function of cytochrome P‐450 with lowvalent ruthenium complexes and peroxides. Biomimetic ruthenium‐catalyzed oxidations of tertiary amines, secondary amines, and other substrates such as amides, β‐lactams, nitriles, alcohols, alkenes, ketones, and even nonactivated hydrocarbons can be performed selectively under mild conditions. These three general approaches provide highly useful strategies for synthesis of fine chemicals and biologically active compounds such as alkaloids, amino acids, and β‐lactams.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Angewandte Chemie International Edition in English
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.