Abstract

This paper presented the efficiency of different Pd-based catalytic systems in a series of SM reactions of 4,5-dibromo-2-methylpyridazin-3(2H)-one with ferroceneboronic acid, ferrocene-1,1′-diboronoc acid, and its bis-pinacol ester. In addition to the disubstituted product, these transformations afford substantial amounts of isomeric 4- and 5-ferrocenyl-2-methylpyridazin-3(2H)-ones, and a unique asymmetric bi-pyridazinone-bridged ferrocenophane with a screwed molecular architecture. The reactions of phenylboronic acid, conducted under the conditions, are proven to be the most reductive in the conversions of ferroceneboronic acid, and produce 2-methyl-4,5-diphenylpyridazin-3(2H)-one as single product, supporting our view about solvent-mediated hydrodehalogenations that are supposed to proceed via the assistance of the ferrocenyl group present in the reaction mixture, or attached to the bromo-pyridazinone scaffold, which is constructed in the first SM coupling of the heterocyclic precursor. A comparative DFT modelling study on the structures and possible transformations of relevant bromo-, ferrocene- and phenyl-containing carbopalladated intermediate pairs was carried out, providing reasonable mechanisms suitable to account for the apparently surprising regioselectivity of the alternative hydrodebromination processes, and for the formation of the ferrocenophane product. Supporting the results of DFT modelling studies, the implication of DMF as a hydrogen transfer agent in the hydrodebromination reactions is evidenced by deuterium labelling experiments using the solvent mixtures DMF-d7–H2O (4:1) and DMF–D2O (4:1). The organometallic products display antiproliferative effects on human malignant cell lines.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call