Abstract
The Seafloor Observation Network for Earthquakes and Tsunamis along the Japan Trench (S-net) is presently the world’s largest network of ocean bottom pressure sensors for real-time tsunami monitoring. This paper analyzes the efficacy of such a vast system in tsunami forecasting through exhaustive synthetic experiments. We consider 1500 hypothetical tsunami scenarios from megathrust earthquakes with magnitudes ranging from Mw 7.7–9.1. We employ a stochastic slip model to emulate heterogeneous slip patterns on specified 240 subfaults over the plate interface of the Japan Trench subduction zone and its vicinity. Subsequently, the associated tsunamis in terms of maximum coastal tsunami heights are evaluated along the 50-m isobath by means of a Green’s function summation. To produce tsunami forecasts, we utilize a tsunami inversion from virtually observed waveforms at the S-net stations. Remarkably, forecasts accuracy of approximately 99% can be achieved using tsunami data within an interval of 3 to 5 min after the earthquake (2-min length), owing to the exceedingly dense observation points. Additionally, we apply an optimization technique to determine the optimal combination of stations with respect to earthquake magnitudes. The results show that the minimum requisite number of stations to maintain the accuracy attained by the existing network configuration decreases from 130 to 90 when the earthquake size increases from Mw 7.7 to 9.1.
Highlights
IntroductionThe least accurate result of the smallest considered magnitude of Mw 7.7 yields a mean accuracy of 99% by using only tsunami data from 3 to 5 min after the earthquake
As a response to the disastrous 2011 Tohoku-oki tsunami, the National Research Institute for Earth Science and Disaster Resilience (NIED) of Japan installed a largescale cabled seafloor observatory called the Seafloor Observation Network for Earthquakes and Tsunamis along the Japan Trench (S-net)
We have comprehensively evaluated the performance of the S-net system in enhancing the tsunami forecasting skill in the study area by utilizing a large number of plausible hypothetical scenarios associated with megathrust events, occurring on the Japan Trench subduction zone and its vicinity
Summary
The least accurate result of the smallest considered magnitude of Mw 7.7 yields a mean accuracy of 99% by using only tsunami data from 3 to 5 min after the earthquake This short time window interval is well-compensated by the exceedingly dense observation points. We apply the optimization to three groups of samples based on magnitude ranges of Mw 7.7–8.1, Mw 8.2–8.6, and Mw 8.7–9.1 This experiment aims at further understanding the effect of station distribution and quantity to the forecast accuracy with respect to different earthquake magnitudes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.