Abstract
In order to clarify the role of bleomycin functional groups in action mechanism, the metal-binding, dioxygen activation, and DNA cleavage of several synthetic analogues and biosynthetic intermediates of bleomycin have been investigated. The present results support that 1) the beta-aminoalaninepyrimidine-beta-hydroxyhistidine portion of the bleomycin molecule substantially participates in the Fe(II) and dioxygen interactions, 2) the transposition of the pyrimidine (or pyridine) and imidazole groups in the Fe(II)-coordination is essential for the effective binding and activation of molecular oxygen by the bleomycin ligands, and 3) the gulose-mannose moiety plays an important role as an environmental factor for the efficient dioxygen reduction and DNA cleavage, although the sugar portion does not contribute significantly to the nucleotide specificity in the DNA strand scission. Certain oligopeptides are able to mimic the metal-binding and dioxygen activation by bleomycin, but not induce the effective DNA cleavage. Probably, the bithiazole DNA interaction site of bleomycin delivers the iron/dioxygen chemistry to particularly the DNA (formula, see text) nucleotide sequences.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.