Abstract

Dynemicin A (1), a member of the enediyne family of natural products, binds to double-stranded DNA (K(B) approximately 10(4) M(-1)) and in the presence of millimolar concentrations of a reducing cofactor such as NADPH or GSH reacts to cleave DNA. In this work, we show that the two flavin-based enzymes ferredoxin-NADP+ reductase and xanthine oxidase catalyze the reductive activation of 1 by NADPH and NADH, respectively. The enzyme-catalyzed reductive activation of 1 leads to more rapid and efficient cleavage of DNA, even with 10-20-fold lower concentrations of the stoichiometric reductant. Significantly, the enzymatic systems are also found to activate the tight-binding (K(B) > or = 10(6) M(-1)) synthetic dynemicin analogs 3 and 5 toward DNA cleavage. These same analogs do not undergo reductive activation with NADPH or NADH alone, where evidence has been obtained to support the proposal that the DNA-bound drugs are protected from reductive activation. The new enzymatic activation processes described may have important implications for chemistry occurring with 1 and synthetic analogs in vivo, as well as for the future development of dynemicin-based anticancer agents.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.