Abstract

Dimension Reduction (DR) algorithms are generally categorized into feature extraction and feature selection algorithms. In the past, few works have been done to contrast and unify the two algorithm categories. In this work, we introduce a matrix trace oriented optimization framework to provide a unifying view for both feature extraction and selection algorithms. We show that the unified view of DR algorithms allows us to discover some essential relationships among many state-of- the-art DR algorithms. Inspired by these essential insights, we propose to synthesize unlimited number of novel DR algorithms by combining, mapping and integrating the state- of-the-art algorithms. We present examples of newly synthesized DR algorithms with experimental results to show the effectiveness of our automatically synthesized algorithms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.