Abstract

We report the rare-earth (RE)-dependent magnetization axes of REBa2Cu4O8, which was synthesized by a flux method under ambient pressure, using powder samples tri-axially oriented in a modulated rotating magnetic field of 10T. By optimizing the growth temperature and cooling rate, RE124 crystals were successfully grown for RE=Y, Sm, Eu, Gd, Dy, Ho, and Er. From the X-ray diffraction measurement, the magnetically oriented directions were largely dependent on the type of RE ions of RE124. However, the tri-axial magnetic anisotropies of RE124 could be qualitatively understood in terms of the magnitude relation between the single-ion magnetic anisotropy of RE3+ ions and the magnetic anisotropy generated by the CuO2 plane and Cu–O chain. For the practical use of this magneto-scientific process, the control of magnetization axes and tri-axial magnetic anisotropies through crystallochemical control is indispensable.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.