Abstract
Five different butynediol-ethoxylate modified polysiloxanes (PSi-EO) were designed and synthesized via two-step reactions: the preparation of low-hydrogen containing silicone oil (LPMHS) by acid-catalyzed polymerization and the following hydrosilylation reaction with 1,4-bis(2-hydroxyethoxy)-2-butyne. The chemical composition of each product was confirmed by FT-IR, (1)H NMR, and (29)Si NMR. The surface activities and aggregation behaviors of PSi-EO surfactants in aqueous solution were studied systematically using surface tension, dynamic light scattering (DLS), transmission electron microscopy (TEM), and contact-angle methodologies. Relatively low critical aggregation concentration (15-34 mg·L(-1)) and surface tension (∼25 mN·m(-1)) were measured for PSi-EO aqueous solution. The rate of surface tension reduction increased both with increasing PSi-EO concentration and with increases in the proportion of hydrophilic moieties within the synthesized compounds. Furthermore, DLS and TEM studies revealed that PSi-EO self-assembled in aqueous solution to form spherical aggregates. Contact-angle measurements conducted upon low-energy paraffin film surfaces demonstrated that PSi-EO exhibited efficient spreading at concentrations above the critical aggregation concentration.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.