Abstract

We report interesting self-assembly behavior of a polyglyceryl-modified silicone surfactant in the aqueous solution; the sample has been characterized through measurements of surface tension, transmission electron microscopy (TEM), dynamic light scattering (DLS), and small-angle x-ray scattering (SAXS). Aqueous solutions of this surfactant had a low critical aggregation concentration (CAC) and surface tension (21.5 mN · m−1), substantially lower than those reported for polyether-modified silicone surfactants with a similar molecular architecture. DLS and TEM revealed self-assembled spherical micelles with a narrow size distribution. At higher concentrations (10 wt%), linear packing of micelles was observed, while the micelle size distribution remained similar (50–90 nm). SAXS data could be fitted through the use of a core–shell model and implied that the core radius remained roughly 4.3–6.0 nm for all solutions of the surfactant analyzed. The origin of its curious aggregates behavior is attributed to hydrogen bonding, steric effects, and the directionality of bond angle from the polyglyceryl block of this novel class of silicone surfactant. This type of surfactant coupling lipophilic segments assembles the cores of the micelles in water which may find positive factors for potential applications such as microreaction compartmentalization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.