Abstract

The synthesis, structure, and anion binding properties of chromogenic octamethylcalix[4]pyrroles (OMCPs) and their N-confused octamethylcalix[4]pyrrole isomers (NC-OMCPs) containing an inverted pyrrole ring connected via alpha'- and beta-positions are described. X-ray diffraction analyses proved the structures of two synthesized isomeric pairs of OMCPs and NC-OMCPs. The addition of anions to solutions of chromogenic OMCPs and NC-OMCPs resulted in different colors suggesting different anion-binding behaviors. The chromogenic NC-OMCPs showed significantly stronger anion-induced color changes compared to the corresponding chromogenic OMCP, and the absorption spectroscopy titrations indicated that chromogenic OMCPs and NC-OMCPs also possess different anion binding selectivity. Detailed NMR studies revealed that this rather unusual feature stems from a different anion-binding mode in OMCPs and NC-OMCPs, one where the beta-pyrrole C-H of the inverted pyrrole moiety participates in the hydrogen-bonded anion-NC-OMCP complex. Preliminary colorimetric microassays using synthesized chromogenic calixpyrroles embedded in partially hydrophilic polyurethane matrices allow for observation of analyte-specific changes in color when the anions are administered in the form of their aqueous solutions and in the presence of weakly competing anions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.