Abstract

A novel Schiff base (SB) ligand, abbreviated as HDMPM, resulted from the condensation of 2-amino-4-phenyl-5-methyl thiazole and 4-(diethylamino)salicyaldehyde, and its metal complexes with [Co(II), Cu(II), Ni(II), and Zn(II)] ions in high yield were formed. The physico-chemical techniques such as elemental analysis, molar conductance, IR, 1H and 13C NMR, mass spectroscopy, and electronic absorption studies were utilized to characterize the synthesized compounds. The studied compounds were examined for their possible anticancer activity against a number of human cancerous cell lines, including A549 lung carcinoma, HepG2 liver cancer, HCT116 colorectal cancer, and MCF-7 breast cancer cell lines, with doxorubicin serving as the standard. The study revealed that Zn(II) complex showed significant activity to inhibit growth of HepG2, MCF7, A549, and HCT116 cell lines by a factor of 88, 70, 75, and 70, respectively, when compared to untreated. In addition, the reported compounds were optimized by employing Gaussian16 program package with B3LYP functional incorporating dispersion with two different basis sets (LanL2DZ and 6–31G(d,p)). Moreover, Autodock Vina software was used to assess the biological effectiveness of the studied compounds against SARS-CoV-2 Omicron variant (PDB ID: 7T9K).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call