Abstract

The synthesis and electrochemical, optical, and cation-sensing properties of the ferrocene-triazole-pyridine triads 3 and 5 are presented. Azidoferrocene 1 and 1,1'-diazidoferrocene 4 underwent the "click" reaction with 2-ethynylpyridine to give the triads 3 and 5 in 81% and 68% yield, respectively. Electrochemical studies carried out in CH(3)CN in the presence of increasing amounts of Zn(2+), Ni(2+), Cd(2+), Hg(2+), and Pb(2+) metal cations, showed that the wave corresponding to the ferrocene/ferrocenium redox couple is anodically shifted by 70-130 mV for triad 3 and 167-214 mV for triad 5. The maximum shift of the ferrocene oxidation wave was found for 5 in the presence of Zn(2+). In addition, the low-energy band of the absorption spectra of 3 and 5 are red-shifted (Δλ = 5-10 nm) upon complexation with these metal cations. The crystal structures of compounds 3 and 5 and the complex [3(2)·Zn](2+) have been determined by single-crystal X-ray methods. (1)H NMR studies as well as density functional theory calculations have been carried out to get information about the binding sites that are involved in the complexation process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.