Abstract

In this work, we report on the fabrication of highly ordered single crystalline BiFeO3 (BFO) nanotubes by a sol–gel technique using two-step anodic aluminum oxide (AAO) as template. We prepared BFO nanotubes with dimensions of 65nm in diameter and 3μm in length, as confirmed by scanning electron microscopy (SEM) measurements. The obtained single crystalline nanotubes present the expected pure phase (BiFeO3) as confirmed by energy-dispersive X-ray spectroscopy (EDX), selected area electron diffraction (SAED) and high-resolution transmission electron microscopy (HRTEM). In addition to the antiferromagnetic behavior, the magnetization curves of the BFO nanotubes also present a ferromagnetic response, which holds from 2 to 300K. This desirable behavior is associated to the break of the antiferromagnetic helical spin ordering of the BFO nanotubes. Besides the magnetocrystalline anisotropy, the large length-to-diameter ratio induced an uniaxial shape anisotropy, attested by the applied magnetic field angle measurements.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.