Abstract

Multiferroic BiFeO3 (BFO) nanotubes have been successfully fabricated by the modified sol-gel method within the nanochannels of porous anodic aluminum oxide (AAO) templates. The morphology, structure and composition of the nanotubes were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscope (TEM), selected-area electron diffraction (SAED), high resolution TEM, (HRTEM) and energy-dispersive X-ray spectroscopy (EDX). Postannealed (650 degrees C for 1 h), BFO nanotubes were polycrystalline and X-ray diffraction study revealed that they are of the rhomohedrally distorted perovskite crystal structure. The results of SEM and TEM revealed that BFO nanotubes possessed a uniform length (up to 60 microm) and diameter (about 200 nm), which were controlled by the thickness and the pore diameter of the applied AAO template, respectively and the thickness of the wall of the BFO nanotube was about 15 nm. Y-junctions in the BFO nanotubes were observed. EDX analysis demonstrated that stoichiometric BiFeO3 was formed. HRTEM analysis confirmed that the obtained BFO nanotubes made up of nanoparticles (3-6 nm). The possible formation mechanism of BFO nanotubes was discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.