Abstract
In this research, 2-amino-4,7-dihydro-5H-spiro[benzo[b]thiophene-6,2'-[1,3]dioxolane]-3-carbonitrile (ST) was synthesized using the Gewald method, starting with 1,4-dioxaspiro[4,5]decan-8-one ketone. The structures of compounds were characterized through FT-IR, 1H-NMR, and 13C-NMR spectra. The antimicrobial properties of the compounds were examined by the disk diffusion process. The compounds (N1-3) did not exhibit effectiveness against the E. Coli (ATCC) and S. Aureus (ATCC) bacteria. The molecular electrostatic potential surface (MEP) of all compounds was calculated via DFT calculations based on the optimized geometries at the B3LYP/6-31G (d,p) level of theory. Negative potential regions were located over the oxygen and nitrogen atoms, whereas positive potential regions were identified over the oxygen and sulfur atoms. Conceptually, computations of the molecular structures of the compounds were carried out using molecular modeling software, specifically GaussView 5.0 and the GAUSSIAN 09 package programs. Additionally, computations were performed for the HOMO and LUMO molecular orbitals of isolated molecules in the gas phase. Molecular electrostatic potential (MEP) surfaces were used to visualize potential interactions between receptors and ligands over the steady-state geometries of the molecules and to highlight the electrophilic and nucleophilic regions of the molecules.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Süleyman Demirel Üniversitesi Fen Edebiyat Fakültesi Fen Dergisi
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.