Abstract
A new series of Schiff base complexes of transition (Fe3+, Co2+, Ni2+, Cu2+ and Zn2+) metal were synthesized from 4-fluoroaniline and 2-thiophene carboxaldehyde and structurally characterized by spectroscopic techniques. The Schiff base is found to be a bidentate ligand and coordinates to the metal ion through azomethine nitrogen and sulphur atom of the thiophene ring. In fluorescence studies, an interaction of Ca2+ and Mg2+ ions with the ligand was also studied. The Schiff base and its transition metal complexes showed inhibition activity against Gram-positive bacteria (Staphylococcus aureus, Escherichia coli), Gram-negative bacteria (Pseudomonas aeruginosa) and antifungal activity against Candida albicans.Electrochemical redox reactions of the metal complexes were analyzed by cyclic voltammetry. The DNA binding properties of the complexes with HS-DNA have been explored by electron absorption spectroscopy. The cleavage reaction of the synthesized ligand and its metal complexes was monitored by gel-electrophoresis method. The nuclease activity of the above metal(II) complexes shows that the Cu(II) complex can cleave DNA effectively than ligand and other metal complexes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.