Abstract

A series (1–20) of diorganotin (IV) complexes with general formula R2SnL were formed by the reaction of R2SnCl2 (where R = Me, Et, Bu and Ph) with Schiff base ligands (H2L1–4) derived from the reaction of indole‐3‐butyric hydrazide with the salicylaldehyde and its derivatives. The structure elucidation of compounds were done by using UV–Vis, FT‐IR, NMR (1H, 13C, 119Sn), Mass spectrometry and thermal gravimetric analysis. Spectroscopic evidences suggested tridentate nature (ONO) of Schiff base ligands and coordinated to the dialkyl/diaryltin (IV) moieties through nitrogen and oxygen donor sites giving pentacoordinated geometry to complexes. The compounds were tested for the antimicrobial activity against bacterial and fungal strains which showed promising biological activity with compound 20 (Ph2SnL4) as most active against microbes. The in silico study of the compounds was carried and observed that the compounds are used as orally active drugs and promote the formation of different hydrazide based drugs. The synthesized compounds were tested against human carcinoma cell lines namely A549, MCF7 and one normal cell line IMR 90 using MTT assay. The diethyl and dibutyltin complexes of Schiff bases displayed good cytotoxic activities. Compound 3 (H2L3) and 10 (Et2SnL2) were most potent against cancer cell lines with lowest IC50 values and 7–8 times less toxic against the normal cell line.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.