Abstract

The monomer N'-octadecyl-N(alpha)-(4-vinyl)-benzoyl-L-phenylalanineamide (4) based on L-phenylalanine has been simply but effectively synthesized, and its self-assembling properties have been investigated. FTIR and a variable-temperature (1)H NMR spectroscopic investigation demonstrated that the aggregation of compound 4 in various organic solvents is due to the formation of intermolecular hydrogen bonds among the amide moieties. UV/Vis measurements indicated that the multiple pi-pi interactions of the phenyl groups also contribute to the self-assembly. As was observed by (13)C cross-polarization magic-angle spinning (CP/MAS) NMR and variable-temperature (1)H NMR measurements, the ordered alkyl chains also played an important role in the molecular aggregation by van der Waals interactions. Compound 4 was polymerized by surface-initiated atom transfer radical polymerization from porous silica gel to prepare a packing material for HPLC. The results of thermogravimetric analysis showed that a relatively large amount of polymer was grafted onto the silica surface. The organic phase on silica was in a noncrystalline solid form in which the long alkyl chain exists in a less-ordered gauche conformation. Analysis of chromatographic performance for polyaromatic hydrocarbon samples showed higher selectivity than conventional reversed-phase HPLC packing materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.