Abstract
In this work, Gum ghatti-cl-poly(acrylic acid)/CoFe2O4 (GGAACF) hydrogels were synthesized using a free radical polymerization technique, with CoFe2O4 nanoparticles incorporated via a co-precipitation method using nitrates as precursors. Thermal gravimetric analysis (TGA) revealed that the inclusion of CoFe2O4 nanoparticles enhanced the thermal stability of the hydrogels. Swelling studies indicated that the addition of 30 mg of CoFe2O4 nanoparticles maximized water retention. Rheological assessments demonstrated non-Newtonian behavior, with flow curves fitted best by the Power Law model. The incorporation of CoFe2O4 nanoparticles significantly improved the hydrogel’s elasticity and viscosity, as evidenced by a higher storage modulus (G′) compared to the loss modulus (G″) across all frequencies, indicating the elastic nature of the hydrogels. The decrease in complex viscosity with increasing frequency confirmed the pseudoplastic properties of the hydrogels, attributed to the random alignment of CoFe2O4 nanoparticles within the matrix. Tan δ values were below unity at all tested frequencies, underscoring the hydrogels’ strong elastic properties. These findings highlight the effectiveness of rheological analysis in characterizing the viscoelastic behavior of polymer hydrogels, which can be tailored for various applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Polymer Analysis and Characterization
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.