Abstract

The goal of this work was to synthesize and characterize ZnPc loaded poly(methyl methacrylate) (PMMA) nanoparticles (NPs) by miniemulsion polymerization. Biocompatibility assays were performed in murine fibroblast (L929) cells and human peripheral blood lymphocytes (HPBL). Finally, photobiological assays were performed in two leukemic cells: chronic myeloid leukemia in blast crisis (K562) and acute lymphoblastic leukemia (Jurkat). ZnPc loaded PMMA NPs presented an average diameter of 97±2.5nm with a low polydispersity index and negative surface charge. The encapsulation efficiency (EE %) of ZnPc PMMA NPs was 87%±2.12. The release of ZnPc from PMMA NPs was slow and sustained without the presence of burst effect, indicating homogeneous drug distribution in the polymeric matrix. NP biocompatibility was observed on the treatment of peripheral blood lymphocytes and L929 fibroblast cells. Phototoxicity assays showed that the ZnPc loaded in PMMA NPs was more phototoxic than ZnPc after activation with visible light at 675nm, using a low light dose of 2J/cm2 in both leukemic cells (Jurkat and K562). The results from fluorescence microscopy (EB/OA) and DNA fragmentation suggest that the ZnPc loaded PMMA NPs induced cell death by apoptosis. Based on presented results, our study suggests that PDT combined with the use of polymeric NPs, may be an excellent alternative for leukemia treatment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.