Abstract

IntroductionIn the current study, silver nanoparticles were prepared and synthesized in aqueous medium using Scrophularia ‎striata leaf extract as stabilizing and reducing agents. Also, we investigated the anti-chronic myeloid leukemia ‎potentials of silver nanoparticles against BV173 (chronic myeloid leukemia in blast crisis), CML-T1 (chronic ‎myeloid leukemia in lymphoid blast crisis), EM-2 (chronic myeloid leukemia in blast crisis; relapse after bone ‎marrow transplantation), and JOSK-M (chronic myeloid leukemia in myelomonocytic) cell lines. ‎Material and methodsSilver nanoparticles were characterized and analyzed using common nanotechnology techniques including UV-‎Vis.‎‏ ‏and FT-IR Spectroscopy, Field Emission-Scanning Electron Microscopy (FE-SEM), and Transmission ‎Electron Microscopy (TEM), and Energy Dispersive X‐ray Spectrometry (EDS). ‎ResultsFT-IR analysis offered antioxidant compounds in the nanoparticles were the sources of reducing power, ‎reducing silver ions to silver nanoparticles. FE-SEM and TEM images revealed a uniform spherical morphology ‎in size of 19.72 nm for the green synthesized nanoparticles. DPPH test revealed similar antioxidant potentials ‎for silver nanoparticles and butylated hydroxytoluene. Silver nanoparticles had very low cell viability and anti-‎chronic myeloid leukemia properties dose-dependently against JOSK-M, EM-2, CML-T1, and BV173 cell lines ‎without any cytotoxicity on the HUVEC cell line. The best result of cytotoxicity properties of silver ‎nanoparticles against the above cell lines was observed in the case of CML-T1 cell line. ‎ConclusionsAfter confirming in the in vivo and clinical trial studies, these nanoparticles can be administrated in humans for ‎the treatment of chronic myeloid leukemia.‎

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call