Abstract

► ZnO nanopowders were synthesized using DC thermal plasma process. ► Type and flow rate of reaction gas were controlled as experimental variables. ► Various morphologies were identified by changing the reaction gas. ► The photovoltaic performances were promoted by removing the unreacted precursors. ► DSSCs based on 1D nanostructure ZnO show the enhanced energy conversion efficiency. Zinc oxide (ZnO) nanopowders were synthesized from commercially available micro-sized zinc powders (Aldrich Co., 98%, 10 μm) by a DC thermal plasma process at atmospheric pressure. The micro-sized zinc powders were vaporized in the plasma region, after which the plasma processing equipment was rapidly quenched, resulting in the formation of ZnO nanopowders with a size of less than 300 nm. Two different reaction gases of oxygen and carbon dioxide were used as the oxygen source and each gas flow rate was controlled as a process variable. The obtained ZnO nanopowders were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). All synthesized ZnO nanopowders showed high crystalline wurtzite structures and the differences in their morphologies were strongly dependent on the operating variables. The photocurrent–voltage ( J – V ) curve of the ZnO nanopowders with a dye of ruthenium (II) 535 bis-TBA (N719, Solaronix) in redox electrolyte showed an overall energy conversion efficiency ( η ) of 2.54%, demonstrating that the application of the mass-producible ZnO nanopowders by thermal plasma processing to DSSC was feasible.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call