Abstract

Nano-sized zinc oxide (ZnO) powders were prepared via a thermal plasma process from micro-sized zinc powder while oxygen was employed as a reaction gas. Two different carrier gases, oxygen and argon, were evaluated and the flow rate of the reaction gas was controlled. The photo-catalytic activities of ZnO powders were evaluated by measuring the degradation of methylene blue (MB) in water under the UV and visible region. The prevailing goal of this study is to improve the photo-catalytic activity of nano-sized ZnO powders for the removal of environmental pollutants. The ZnO nanopowders were characterized by XRD, SEM, BET, and UV–vis spectrometry. Their mean crystallites sizes ranged from 26.5 nm to 48.6 nm. It was confirmed by a XRD analysis that the ZnO nanopowders had a high quality wurtzite structure. SEM and XRD results show that the size of the particles synthesized increased with an increase of the flow rate of the oxygen reaction gas. The powder obtained using the argon carrier gas with higher oxygen reaction gas flow rate was more rod-shape. The MB decomposition rates of the obtained ZnO nanopowders were studied under the UV and visible region. In the UV region, synthesized ZnO could decompose MB as well as commercial ZnO. However, in the visible region, the MB decomposition rate obtained using ZnO was much higher than that by commercial ZnO.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call