Abstract
Radioactive sucrose, supplied through the cut base to Pisum sativum epicotyls, was transported to the growing apex (plumule and hook) and used there for the synthesis mainly of uridine diphosphoglucose (UDP- glucose), fructose and cell wall glucan. Enzyme extracts of the apical tissue contained sucrose synthetase activity which was freely reversible, i.e. formed UDP-glucose and fructose from sucrose (pH optimum = 6·6 for the cleavage reaction, K m for sucrose = 63 mM). Particulate fractions of the same tissue contained a β-glucan synthetase which utilized UDP-glucose for formation of alkali-soluble and -insoluble products (pH optimum = 8·4, K m for UDP-glucose = 1·9 mM). Values for V max and yields of these two synthetase activities were sufficient to account for observed rates of cellulose deposition during epicotyl growth (15–25 μg/hr/epicotyl). When soluble pea enzyme was supplied with sucrose and UDP at pH 6·6 and then the preparation was supplemented with particles bearing β-glucan synthetase at pH 8·4, the glucose moiety of sucrose was converted to glucan in vitro. The results indicate that it is feasible for these synthetases to co-operate in vivo to generate β-glucan for expanding cell walls.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have