Abstract
Vertically aligned carbon nanofibers (VA-CNFs)-carbon nanowalls (CNWs) have been prepared on a silicon (Si) substrate by plasma-enhanced chemical vapor deposition. The VA-CNFs-CNWs were formed at bias voltage of - 185 V, whereas conventional VA-CNFs were synthesized under conditions of high bias voltages. Degenerated CNWs with turbostratic graphite structure were created on amorphous carbon layer around CNFs like a flag attached to a pole, which is evidenced by scanning electron microscopy, transmission electron microscopy, electron diffraction, and micro-Raman spectroscopy. Electron field emission characteristics of VA-CNFs-CNWs with unique microstructure, fabricated on the Si substrate, were primarily investigated. As a result, the VA-CNFs-CNWs showed the turn-on and the threshold fields of 1.7 V x microm(-1) and 3.35 V x microm(-1) with current densities of 10 nA x cm(-2) and 1 microA x cm(-2), respectively. The field enhancement factor beta was estimated to be 1059 by using Fowler-Nordheim theory.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have