Abstract

Ultra-small Co3O4-C nanoparticles were synthesized with an average core size of 8.2 nm by annealing CoC nanoparticles in air at a relative low temperature. The formation mechanism of these nanoparticles can be attributed to the presence of defective C shells, the high chemical activity of ultra-small Co nanoparticles, and the gradual oxidation of the C shell during the low-temperature annealing process. The Co3O4-C nanoparticles demonstrated remarkable thermal stability at temperatures of up to 360 °C in air. Moreover, he Co3O4-C nanoparticles exhibited excellent microwave absorption performances, with an optimal reflection loss of −64.2 dB and an effective bandwidth of 6.08 GHz at a single thickness of 2.2 mm. These impressive microwave absorption properties can be attributed to the small size effects, the core-shell nanostructure, and the presence of defective C shells in the nanoparticles. Overall, the as-synthesized Co3O4-C nanoparticles show great potential for future applications as microwave absorbers, thanks to their large bandwidth, strong microwave absorption, and high thermal stability in air.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call