Abstract

Tungsten (W) and Cerium (Ce) doped nanoTitanium oxide (TiO2) nanophotocatalyst were prepared by the sol-gel method and their photodegradation effect against atrazine herbicide were investigated. The doping of the nanocatalyst took place at 50 °C within a time interval of 120 minutes. The prepared gel was dried and calcined in the oven at 350 °C for 75 minutes. The XRD result revealed that the synthesized nanocatalyst was 16.7 nm in size with a mostly monoclinic structure. With FTIR spectra, characteristic peaks of TiO2 were found at 516 cm-1, Ti-O-Ce at 1104 cm-1, and W-O with a single bond at 1609 cm-1. Scanning electron microscope analysis revealed the surface morphology of synthesized nanophotocatalyst. The photocatalytic activity of synthesized nanocatalyst was tested on the degradation of atrazine herbicide (ATZ) under visible and UV light in a batch reactor. The efficiency of nanocatalyst was compared for effective utilization. About 46.5 % of photocatalytic activity was observed without UV light irradiation within 120 minutes. The photocatalytic activity of W-Ce co-doped TiO2 to degrade atrazine further increased up to 99.1 % when the solution was irradiated under UV light. Factors like pH, time, and concentration of nanocatalyst were optimized to check the photocatalytic activity of nanocatalyst on ATZ. It was concluded that nanocatalyst showed an efficient photocatalytic degradation at pH 6 within 120 mins time interval after exposure to UV light.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call