Abstract
B(C 6F 5) 3 as a catalyst and polymethylhydrosiloxane as a hydride source have been employed for the reductive dehydroxylation of Baylis–Hillman adducts wherein the hydride adds in an S N2′ manner onto the unactivated allyl alcohol moiety with concomitant elimination of the hydroxy group along with double bond migration. The products formed were found to be E in the case of ester adducts and Z in the case of nitrile adducts.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.