Abstract

In this study, the utilization of an electric field generated by the high voltage discharge plasma over a liquid water surface containing glycine compound to synthesize titanium dioxide (TiO2) nanoparticles was demonstrated. The experiments were conducted in a batch-type system with applied voltages ranging from 18.6 − 23.4 kV under various pressurized gases at room temperature. The results indicated that the applied voltages, applied pulse numbers, and pulsed repetition rates had a significant influence on the decomposition reaction of glycine compounds and titanium rod electrode erosion. The ultraviolet − visible (UV − vis) spectra showed that titanium dioxide nanoparticles could be observed in each solution product, and most of them were brookite-type structures. According to the HRTEM images, TiC was also produced as a nanoparticle product. Based on the experimental results, this process is applicable and could result in advanced metal-based nanoparticle synthesis technology.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call