Abstract
Nuclear reactor control is pivotal for the safe and efficient operation of nuclear power plants, facilitating the regulation of reactor reactivity. This study introduces an optimized fractional-order proportional-integral-derivative (FOPID) controller tailored for maintaining reactivity levels in nuclear power plants, particularly during load-following operations. The controller adjusts the position of control rod to regulate power output effectively. We enhance FOPID controller's performance using a modification of Planet Optimization Algorithm (POA-M), leveraging the strengths of the Arithmetic Optimization Algorithm (AOA) to improve its exploitation capabilities. We evaluate the efficacy of POA-M-FOPID controller against traditional techniques, including POA, AOA, and Particle Swarm Optimization (PSO). We assess its performance using the Egyptian Testing Research Reactor (ETRR-2) as a case study. Our results demonstrate that the POA-M-FOPID controller outperforms alternative algorithms across various control metrics, exhibiting superior resilience and efficiency. Notably, the utilization of the POA-M-FOPID controller yields remarkable improvements in reactor power performance, achieving significantly reduced settling time (25.27 sec) and maximum overshoot (0.67 %) compared to conventional FOPID controllers incorporating POA, AOA, and PSO methods. These findings underscore the effectiveness of POA-M-FOPID in enhancing nuclear reactor control systems, offering potential benefits for broader nuclear power industry in terms of safety, stability, and operational efficiency.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.