Abstract

Although a thiourea-immobilized polystyrene sorbent has been reported to exhibit high Ag+ sorption capacity (135mg/g), it is not stable under the acidic conditions commonly employed for desorption. In this research, we synthesized novel thiourea-immobilized polystyrene (TA-PS) nanoparticles to be highly acid resistant via a two-step procedure from polystyrene nanoparticles: acetylation and the subsequent immobilization of thiourea. We investigated the influences of pH, contact time, and initial concentration of AgNO3 solution on the Ag+ sorption of the polymer nanoparticles and estimated the maximum Ag+ sorption capacity to be 190±5mg/g at a pH of 6. The sorption performance did not significantly decrease in tap water containing competing ions. The sorption kinetic data were well fitted to the pseudo-second-order kinetic model. Overall, the TA-PS nanoparticles exhibited a high Ag+ sorption capacity and high selectivity against alkaline and alkaline earth-metal ions. In particular, their high acid resistance allows them to be used for long time periods in sorption–desorption processes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.