Abstract

Low fuel consumption is one of the main requirement for current internal combustion engines for passenger car applications. One of the most used strategies to achieve this goal is to use downsized engines (smaller engines while maintaining power) what implies the usage of turbochargers. The coupling between both machines (the turbocharger and the internal combustion engines) presents many difficulties due to the different nature between turbomachines and reciprocating machines. These difficulties make the optimal design of the turbocharged internal combustion engines a complicated issue. In these thesis a strong effort has been made to improve the global understanding of different physical phenomena occurring in turbochargers and in turbocharged engines. The work has been focused on the 1D modelling of the phenomena since 1D tools currently play a major role in the engine design process. Both experimental and modelling efforts have been made to understand the heat transfer and gas flow processes in turbochargers. Previously to the experimental analysis a literature review has been made in which the state of the art of heat transfer and gas flow modelling in turbochargers have been analysed. The experimental effort of the thesis has been focused on measuring different turbochargers in the gas stand and the engine test bench. In the first case, the gas stand, a more controlled environment, has been used to perform tests at different conditions. Hot tests with insulated and not insulated turbocharger have been made to characterise the external heat transfer. Moreover, adiabatic tests have been made to compare the effect of the heat transfer on different turbocharger variables and for the validation of the turbine gas flow models. In the engine test bench full and partial load tests have been made for model validation purposes. For the models development task, the work has been divided in heat flow models and gas flow models. In the first case, a general heat transfer model for turbochargers has been proposed based on the measured turbochargers and data available from previous works of the literature. This model includes a procedure of conductive conductances estimation, internal and external convection correlations and radiation estimation procedure. In the case of the gas flow modelling, an extended model for VGT performance maps extrapolation for both the efficiency and the mass flow has been developed as well as a model for discharge coefficient prediction in valves for two stage turbochargers. Finally, the models have been fully validated coupling them with a 1D modelling software simulating both the gas stand and the whole engine. On the one hand, the results of the validation show that compressor and turbine outlet temperature prediction is highly improved using the developed models. This results prove that the turbocharger heat transfer phenomena are important not only for partial load and transient simulation but also in full loads. On the other hand, the VGT extrapolation model accuracy is high even at off-design conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call