Abstract

The free-piston engine generator is an attractive alternative to the conventional reciprocating engine due to the feature that it moves without crankshaft system. This paper presented a simulation for the investigation on the characteristic of in-cylinder gas motion and heat transfer in a compression ignited free-piston engine generator. An operation experiment was performed to obtain the precise piston motion for the modeling of heat transfer and gas flow. The development of the multi-dimensional model was described, and simulation results were presented and showed good similarity with the experimental data. Then, the heat transfer and gas motion in the free-piston engine generator were discussed, on which the influences of piston motion were also investigated compared with a corresponding conventional reciprocating engine. The results indicated that compared with the conventional reciprocating engine, a higher level of squish and reverse squish effect was found for the free-piston engine generator due to its faster motion around top dead center, while its slower piston motion led to weaker gas turbulence in the compression process. Moreover, the free-piston engine generator and conventional reciprocating engine did not show a significant difference in heat transfer during the compression process, however, an obvious advantage of heat transfer was indicated for the free-piston engine generator in combustion and expansion processes due to its lower combustion temperature and the reduced time that is available for heat transfer caused by its faster expansion. The mechanism for such differences is that the free-piston engine generator moves with uneven equivalent speed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.